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Abstract 

In terms of urban rail transit network vulnerability, most studies have focused on the 

network topology characteristics and travel cost changes after network incidents and 

analyzed rail transit network independently. The neglects of passenger flow 

distributions on the network and alternative public transport modes under rail network 

disruptions would either underestimate or overestimate the vulnerability of rail transit 

network, and thus lead to inaccurate results and decisions. This study presents an 

accessibility-based measure for urban rail transit network vulnerability analysis and 

explicitly accounts for rail passenger flow characteristics, travel cost changes, and 

alternative transit modes. The proposed method could be used for failures of station, 

link, or line as well as simultaneous disruptions of these network elements. 

The accessibility measure is demonstrated with an example problem and compared 

with methods in the literature. It is shown that the proposed approach is capable of 

measuring the consequences on rail network, and the advantages of the accessibility 

method are demonstrated and compared. The methodology is applied to the urban rail 

transit network of Shenzhen, China in a multi-modal public transport networks. The 

results reveal that the consequences of disruptions on network accessibility are 

obviously different for stations with different passenger flow characteristics, and some 

undisrupted stations are found to be vulnerable under surrounding station failures. The 

proposed methodology offers reliable measurements on rail transit network 

vulnerability and decision implications for mitigation measures and investment 

priorities under rail network disruptions.      

 

Keywords: Network vulnerability analysis; Urban rail transit; Accessibility; 

Multi-modal transit network; Disruption  
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1. Introduction 

 

Urban rail transit consisting of rail and light rail is playing an essential role in people’s 

daily intra-city travels. The importance of urban rail transit could be observed from 

the large passenger flows it carries especially in cities, such as Shanghai and Beijing, 

China, where urban rail transit is undergoing rapid development. It is announced by 

Shanghai Rail and Beijing Municipal Commission of Transport in March, 2016 that 

the daily rail transit passenger flows exceed 10 million in the two cities. This number 

is expected to increase with the continuous rail transit network construction and 

ever-growing travel demand. Urban rail transit network has to be resilient and robust 

to provide reliable services for such large amount of population every day. Any type 

of incident on rail transit network will pose great threats on people’s daily travel 

making the rail network vulnerable (Rodríuez-Núñez and García-Palomares, 2014). 

The impacts on commuters’ travel decisions could even go beyond the direct travel 

time losses (Cox et al., 2011; Van Oort, 2014).  

Consequently, there is growing research interest in transportation network 

vulnerability analysis in recent decades. Attention has been attracted in the 

vulnerability analysis of highway and urban road network under natural or man-made 

disruptions (Jenelius et al., 2006; Taylor et al., 2006; Chen et al., 2007; Lu and Peng, 

2011; Taylor, 2012; Mattsson and Jenelius, 2015), and public transport network 

vulnerability hasn’t been of much concern until recent years (Mishra et al., 2012; 

Rodríguez-Núñez and García-Palomares, 2014; Cats and Jenelius, 2015; Cats et al., 

2016). In case of failures especially emergent disruptions, public transport network 

could be more vulnerable than road network due to its low network redundancy and 

large number of people affected. This vulnerability is particularly highlighted for 

urban rail transit network.  

Although no agreement has been reached on the exact definition of transportation 

network vulnerability, the methodology addressing vulnerability is now well 

established by addressing the probability of incidents (or exposure of transportation 

network to disruptions) and consequence measures under disruptions. During the past 

decade, literature on transportation network vulnerability mainly contributes to the 

development of methodologies measuring consequences on network performance 

after disruption events. These methodologies could be categorized into 

exposure-importance approach (Jenelius et al., 2006), accessibility measure (Sohn, 

2006; Taylor and Susilawati, 2012; Chen et al., 2015), game theory method (Bell, 

2008), and so on (Chen et al., 2007). The above methods are mainly applied to road 

network based on a full network scan approach in the beginning (Sohn, 2006; Taylor 

et al., 2006; Lu et al., 2015). Later researches try to overcome the disadvantage in 

computation time of the full scan method by either identifying links for further 

analysis based on certain criteria (Knoop et al., 2012; Cats et al., 2016) or calculating 

“impact area” of the affected link to downscale the network for analysis (Chen et al., 

2012).       

Different from the above vulnerability analysis of road network, urban rail transit 
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network vulnerability is usually studied based on complex network theory exploring 

the network topology characteristics under incidents. Degree, betweeness, centrality 

measures, and connectivity methods are employed for the measurement of rail transit 

network vulnerability, robustness, and resilience (Derrible and Kennedy, 2010; Zhang 

et al., 2015; Dimitrov and Ceder, 2016). A detailed presentation of measures in the 

literature is summarized by Mishra et al. (2012). This tradition of vulnerability 

analysis would be important for the planning and designing of urban rail transit 

network. However, under disruptions the vulnerability of urban rail transit network 

might go beyond the issue of pure network topology but a problem of combination of 

network topology and passenger supply and demand, especially considering the huge 

amount of passengers served. As a result, another approach direction in urban transit 

network vulnerability analysis sharing similar concept to the above road network 

vulnerability method has been shaped recently. Based on total travel time and 

passenger flow on each link, De-Los-Santos et al. (2012) measure passengers’ 

robustness under link and station failure by introducing with-bus-bridging and 

without-bus-bridging cases for the Madrid rail transit network. Rodríguez-Núñez and 

García-Palomares (2014) developed a public transport network vulnerability approach 

based on travel time and changes in trip distribution. The methodology is applied to 

the Madrid Rail system, and critical links and the importance of circular line are 

identified. Cats and Jenelius (2014) integrate betweenness centrality and dynamic 

costs of operators and passengers together to measure the public transport network 

vulnerability of Stockholm, Sweden revealing that betweenness centrality itself may 

not be a good indicator of link importance. To evaluate the effectiveness of strategies 

reducing impacts of disruptions on public transport network, Cats and Jenelius (2015) 

propose passenger utility measures quantifying network-wide consequences on rapid 

public transport networks of Stockholm, Sweden while integrating stochastic 

passenger supply and demand, dynamic route choice, and operation capacity 

limitation. Recently, the probability or exposure side of public transport network 

vulnerability has been addressed by Cats et al. (2016) accounting for passengers’ 

exposure to link failures by elaborating the frequency and time duration of possible 

disruption events in the Netherlands.    

It could be learnt from the above review that the majority of existing urban rail transit 

network vulnerability analysis methodologies is however rooted in network and graph 

theory neglecting the large population it carries (Mishra et al., 2012; Mattsson and 

Jenelius, 2015). Recent contributions have been made to include travel time, 

passenger flow, and link-based passenger exposure in transit network analysis. 

However, the importance of a link or station in terms of passenger volumes is seldom 

considered in the vulnerability methodologies such as Rodríguez-Núñez and 

García-Palomares (2014). As concluded by Knoop et al. (2012), different links are 

found to be the most important based on the criteria used. The exclusive of this 

importance would underestimate the vulnerability of links or stations which have 

small average travel time changes but a huge number of affected people under 

disruptions. The inclusion of passenger importance is particularly essential for the 

vulnerability analysis of rail transit in developing countries with developing rail 
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network and changing trip distributions. As it could be found that most of the 

vulnerability literature focuses on the urban rail transit network in developed countries 

which would have small passenger demand variation, and this may not be applicable 

to developing countries with growing and changing rail ridership demand. In case of 

disruptions, people may not only want to know the vulnerability of the network but 

also interested in working stations or links mostly affected, but such information is 

rarely provided in the literature. Methodologies of vulnerability analysis usually treat 

rail transit network independently without considering the interdependency nature 

between multi-modal urban transit networks in reality, which would overestimate the 

vulnerability of urban rail transit network under disruptions. People would transfer to 

other public transport modes nearby if a rail transit station is failed or closed, and 

exclusive of this alternative in urban rail transit network vulnerability analysis may 

reach inaccurate results and conclusions.  

In order to address the above research gaps, this study presents and applies a unique 

location-based accessibility approach for the vulnerability analysis of urban rail transit 

network. Unlike most studies on the vulnerability of public transport networks as well 

as the accessibility method for road network vulnerability, this study explicitly 

accounts for the importance of stations and transfers to other public transport modes 

under rail network disruptions. The proposed rail transit network vulnerability could 

not only be measured for station disruptions but also for link and line failures based 

on a combination of the accessibility method and graph theory approach. The 

proposed methodology is described in a step by step process in Section 2. To evaluate 

the accessibility-based methodology, an example problem is then presented 

demonstrating results of various vulnerability measures in Section 3. Section 4 shows 

a case study on Shenzhen urban rail transit network (SURTN), and a method of 

identifying candidate stations for a full scan analysis is used. Finally, Section 6 

summarizes the findings of this research and concludes the paper. 

 

2. Methodology 

 

A significant body of literature has contributed to the development and improvement 

of accessibility for different purposes (Hansen, 1959; Bhat et al., 2002; Litman, 2016). 

Accessibility is also proved to be an important measure in transportation network 

vulnerability analysis (Sohn, 2006; Taylor et al., 2006; Lu and Peng, 2011) and mostly 

developed for applications on road network. The accessibility of public transport 

network has recently attracted a lot of attention and become an important direction of 

research (Nassir et al., 2016). We propose a transit accessibility method for measuring 

the vulnerability of rail transit network under disruptions. The method is developed 

for failures of station, link, and line. Normally, stations are more exposed and 

vulnerable to disruptions as stations have more complex passenger activities and 

infrastructure compositions and more probability of becoming terrorists’ targets than 

links. The mathematical construct of the proposed methodology starts with a 

station-based accessibility measure as follows.  

This study proposes an accessibility index for metro station vulnerability analysis. 
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Based on the classic Hansen integral accessibility index, the importance of each metro 

station and the dependency of land use on metro network are both accounted for the 

improvement of the accessibility index. Therefore, the improved accessibility index is 

defined as 

 

iii ACRA =
                    

(1) 
 

Equation 1 shows the calculation of the proposed accessibility index, where RAi 

represents the accessibility of metro station i including land use dependency; Ci 

denotes the dependency of land use on metro within walkable distance of station i; Ai 

is a location-based accessibility of metro station i. 

 The dependency of land use Ci is then be formulated as: 
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Where, ri shows the residential land area around station i; mi denotes the 

manufacturing land are; oi is the commercial and office land area around station i; si is 

the other land area around station i. 

In this work, the land area within walkable distance of a metro station is interpreted as 

all the floor area of certain land use and equal to the area of land on the ground 

multiplied by the plot ratio of a building.   
c

iw  is measured as the car ownership ratio of the people living or working within 

walkable distance of station i. In specific, a car alternative availability ratio is 

calculated for each station as the car alternative availability of a station divided by the 

maximum value of this availability of station in a study area. In this way, the car 

alternative availability is standardized to [0,1]. 
s

iw  shows the availability of the alternative ground buses. It could be measured with 

the number of bus stops within walkable distance of a metro station i. Similarly, the 

bus alternative for station i could also be normalized.   

As for the degree of mixed land use index, when different land use types are optimally 

mixed,  that is, r/L=m/L=o/L=s/L=1/4, and the mixed degree of land use Li equals to 
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1. This means that when the four land use types reach equilibrium 

(r/L=m/L=o/L=s/L), land use has the least dependency on the metro. In reality, the 

equilibrium land use condition demonstrates diverse travel behavior around a metro 

station, and this could balance travel demands to an optimal extent while improving 

transport accessibility of the area. Therefore, the closer of land use match to the 

equilibrium, the larger the value of Li and thus the less dependent the land use on the 

metro. When there is only one type of land use around a station, and Li is calculated as 

0, however, it almost impossible to happen since there may always exist some other 

land use types likes roads. Hence, the calculated value of the mixed degree of land use 

will be within (0,1]. 

For the alternative availability indices of two modes, the larger the values denote the 

higher possibility of using these alternatives, which will decrease the dependency on 

metro travel and increase the accessibility of an area. Based on the normalized 

calculation, the values of both alternative availability indices are scaled to 0 and 1. 

Besides, these two alternative modes have few chance to be equal to 0 simultaneously, 

thus the calculated value of Ci will always be larger than 0, it ensures the avoidance of 

the unreasonable case under which the result of accessibility equals to zero. 

Therefore, mixed land use index and two alternative availability indices are all 

positively correlated with the dependency degree index Ci. If the land use types are 

more balanced, and more other travel alternatives around a metro station area 

available, the dependency of people’s travel on metro would be lower, all of which 

will result in increasing accessibility of the land. In another word, the higher the value 

of Ci is, the greater the accessibility will be, and the maximum value of this 

dependency is 1. 

For Ai in Equation 1, it can be defined similarly to the improved accessibility index 

for transportation network vulnerability analysis introduced by Lu and Peng (2011) as 
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Where, p

iw is the weight of total number of people departing and arriving metro station 

i, denoted by da

iN , and it is calculated by making a ratio to the total number of people 

departing and arriving from the whole metro network at the same time, denoted by 

daN ;
p

jw  is the weight of number of travelers from station j ( j ≠i ) to station i, 

denoted by jiN , and it is calculated by making a ratio to the total number of people 

whose destination is station j, denoted by Ni; )(0

ijtf is the travel cost between stations 
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i and j without network degradation; )( ijtf  is the travel cost between stations i and j 

after network degradation;α  stands for travel cost decay parameter(>0); and n 

represents the number of metro stations in the study area. 

(5) 

 

 (6) 

 

The main advantage of the above proposed accessibility index in this paper could be 

concluded that  it considers the relationship between surrounding land use and metro 

network, and quantifies the dependency of land use on metro network while including 

alternatives of other travel modes. Another advantage is that the components of this 

index are normalized making the values of the final improved accessibility index 

ranges from 0 to 1, thus comparable among all stations,  therefore, it will be helpful 

for the rapid identification of the most important stations. 

The degree of metro network degradation is measured based on the accessibility 

reduction before and after network degradation. 
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iRA : accessibility of metro station i without metro network degradation; 

l

iRA : accessibility of metro station i if station(s) or link(s) l fails. 

Specifically, the accessibility change for individual station under network degradation 

could also be calculated to identify stations mostly affected. The accessibility change 
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where 

l

iRAR : the accessibility reduction ratio of metro station i under the failure of station(s) 

or link(s) l . 

As mentioned before, vulnerability is the susceptibility of metro network to incidents 

which may result in serious consequences, where the susceptibility is the combined 

result of the probability of the events and the consequences. The consequences can be 

measured by the proposed reduction in the network accessibility. As a result, the 

metro network vulnerability could be measured as 
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where 

Vd: the vulnerability of metro network degradation under disruption(s) d; 

probd: the probability of metro network degradation under disruption(s) d. 

 

Based on Eqs. (7), (8), and (9), rail transit network accessibility changes could be 

measured with scenarios of single or multiple network elements disruptions. 

Criticality of disrupted station(s), link(s), and lines(s) could also be calculated and 

compared regarding the changes of network accessibility, and thus critical rail transit 

infrastructures would be identified and prioritized.   

 

3. Example problem 

 

The above methodology is described with an example problem as follows. The 

example network is shown in Fig. 1(a), consisting of five bidirectional rail transit lines 

and six stops. The characteristics of each line (speed, time headway, capacity, and 

operation frequency) and station (departure and arrival passengers and number of bus 

stops around the station) are shown in the Figure. The OD passenger flows between 

stations are also given in Fig. 1(b). Ground buses running parallel to each rail line are 

available. It is assumed that disruptions occur in an emergency, passengers in the 

transit network could not change origins and destinations but routes and modes, and 

thus there is no change in the departure and arrival passengers for each station before 

and after disruptions. The travel costs are defined as the total travel time of rail transit 

and bus transit consisting of in-vehicle travel time, transfer time, and time headway.  

 

 (a) 
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(b) 

Station ID 1 2 3 4 5 6 

1 0 2 3 9 2 3 

2 2 0 1 4 1 1 

3 3 1 0 5 1 2 

4 6 3 5 0 3 5 

5 3 1 2 5 0 2 

6 2 1 1 4 1 0 

Fig. 1. (a) Example of the urban rail transit system. (b) OD flows between transit 

stations. 

 

The above data were input into the proposed methodology, and calculation was 

conducted in Matlab (R2008a). Methodologies that are widely used in previous 

studies such as degree centrality (Zhang et al., 2015), connectivity index (Mishra et al., 

2016), and Hansen integral accessibility (Taylor et al., 2006) were also calculated for 

the example network. The six stations are assumed to be failed one by one, and then 

each methodology is calculated for the six stations. A summary of the results is shown 

in Table 1.  

The widely adopted degree centrality method only considers the network topology 

characteristics, and thus needs less data and computation time. As a result, stations 3 

and 4 with the same topology have the same values and are both identified as the most 

important stations. Other stations are calculated with values of 0.4. This method fails 

to include passengers and transit vehicle characteristics of a rail transit system, and 

would reach inaccurate results. The connectivity method goes one step further by 

addressing the transit vehicle characteristics such as capacity, frequency, and speed. 

As shown in Table 1, station 3 is calculated as the most important station followed by 

stations 5, 6, 4, and so on. However, station 4 has much more OD flows than station 3, 

and thus more people would be affected when station 4 is failed. The connectivity 

index still ignores passenger distribution on the network since the consequences of a 

disruption event are normally evaluated by the number of people affected. What’s 

more, the above two methods provide no information about the impacts on other 

working stations if a station is disrupted. The Hansen integral accessibility method 

considering the importance of passenger generation stations and the impedance 

between generation and attraction stations could measure the impacts on other 

working stations and identify the most affected working stations. But this accessibility 

index does not include the importance of attraction stations and the availability of 

other transit services. Under this method, the individual value of each station could 

provide rare information until compared with values of other stations. The above 

disadvantages are addressed and improved with the proposed station-based 

accessibility approach. For example, the Hansen integral accessibility concludes that 

station 1 is more important than station 5 under disruptions, but station 1 has more bus 

stops and its vulnerability would decrease with the availability of more bus 
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alternatives than station 5. This reaches the same conclusion as the proposed method 

that station 5 is more important and vulnerable as shown in Table 1.  

Table 1  

Comparison of rail station failure measures for vulnerability analysis.  

Measure Station values Most affected  

working stations 1 2 3 4 5 6 

Degree centrality 0.4 0.4 0.6 0.6 0.4 0.4 N/A 

Connectivity index 1.33 0.30 3.06 1.37 2.95 1.62 N/A 

Hansen integral 

accessibility 

75.58 53.52 86.01 134.55 70.45 59.02 Available 

Proposed accessibility 

approach 

0.343 0.376 0.419 0.485 0.400 0.399 Available 

  

4. Case study 

The proposed methodology is applied to the urban rail transit network of Shenzhen, 

China. The accessibility-based network vulnerability approach is detailed based on 

station failures on SURTN since link and line failures are calculated based on station 

failure in the methodology. 

 

4.1. Case study description 

 

With the third public transport network in China, Shenzhen has a transit ridership of 

over 10.5 million per day. Shenzhen bus transit operates 919 bus routes with a daily 

ridership of 5.9 million. Consisting of 5 lines and 118 stations including 13 transfer 

stations, SURTN has a length of 178.0 km and ranks the sixth in the country. However, 

it has the fourth rail transit ridership in China with nearly 3.0 million passengers per 

day after Beijing, Shanghai, and Guangzhou. The peak day rail ridership in Shenzhen 

would reach 3.5 million. With another 6 lines under construction, SURTN will be 

extended to 11 lines with a total length of 434.9 km in 2020. As a job-immigrant city 

in China, Shenzhen’s rail transit is expected to play a more and more important role in 

people’s daily travel. As shown in Figure 2, passenger flow on SURTN is mainly 

distributed on the southeastern part of the network, and the network would become 

vulnerable with such large passenger volume under disruptions.    

 

4.2. Data   

 

In order to analyze the vulnerability of SURTN under station failures, the following 

network and passenger flow data are used. The urban rail transit network of Shenzhen 

with stations and links is shown in Figure 2 for the year of 2013. The network for 

analysis also contains Shenzhen bus transit network in the year. The station data 

include average daily OD trip matrix between rail stations in 2013 and the number of 

bus stops within 600 m of rail stations (Jun et al., 2015). The candidate rail stations 

for analysis are selected based on the station OD passengers and the station location 
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on the network, that is, stations with large passenger volume, transfer stations, and 

stations far away from city center but having a relative high ridership are chosen as 

candidate stations for analysis. The travel time of rail transit includes in-vehicle travel 

time, transfer time, and vehicle time headway. This study attempts to calculate 

network performance under emergent incidences such as vehicle breakdown, signal 

failure, terrorist attacks, and so on, and thus OD trips are assumed to be unchanged 

before and after disruptions.  

   

 
Fig. 2. Shenzhen urban rail transit network and passenger volume distribution. 

 

5. Results and discussion 

 

As shown by the IDs with a larger font size in Figure 2, 30 stations were chosen for 

analysis. The stations were assumed to be disrupted individually, and station-based 

network accessibility was calculated under each disruption. The consequence of a 

station failure is measured with the network-wide accessibility reduction comparing 

with its original value of 1. Multiple failures of station were then analyzed for the 

network. The calculation of each disruption scenario consumes 30 seconds including 

4 seconds of the network accessibility calculation in Matlab. The calculation results 

are shown as follows.  

 

5.1. Measuring network accessibility under individual station failures 

 

Network accessibility of SURTN was calculated for each of the 30 station failure 

scenarios, and results are shown in Fig. 3. Among all the candidate stations, the failure 
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of station 4 would result in the most network accessibility reduction. Located in the 

central business district, station 4 has the most passenger volume among all the rail 

stations in Shenzhen, but does not have the highest bus availability, that is, bus stop 

and passenger volume ratio. When station 4 is disrupted, a large volume of affected 

passengers could not find enough bus alternatives to evacuate, and thus poses the 

most risk on the rail transit network. Following station 4, stations 3, 11, 26, 6, and 1 

also cause high accessibility reduction if disrupted. All of these stations are on Line 1 

which was built the earliest and goes through the most developed area of Shenzhen 

City. Station 62 is proved to be the least important station whose failure causes the 

least network accessibility reduction. Situated in a less populated area of the city, 

station 62 has only 30% of rail ridership but 5 times of bus availability of station 4, 

which would account for the least importance of station 62. The failure of station 37 

causes a small network accessibility reduction may be due to its low ridership which 

is only 10% of the ridership of station 4. Substantial accessibility reductions could be 

observed for most of the transfer stations, since most of them have relative high 

ridership. However, failures of transfer stations 50 and 24 generate low network 

accessibility reductions which are even lower than non-transfer stations. Station 24 

has a relative low ridership, and as a suburban station its importance would be low 

under disruptions. Serving in the central area of the city, station 50 has higher 

ridership and bus availability than station 24. Particularly, the OD trips of station 50 

are mainly distributed among the surrounding stations, and the short distance trips 

would be less affected once station 50 is closed. Station 30 has the most importance 

increase under failure comparing with the rank based on passenger volume. One 

reason would be the pretty low bus availability around the station, and the other could 

be explained by its widely distributed OD flows which could be seriously affected for 

long-distance bus alternative travels if station 30 is disrupted. These passenger flow 

and bus alternative characteristics could be captured with the proposed methodology. 

It’s worth note that all the disrupted stations are still accessible but have substantial 

reductions (more than 80%) in their accessibility.   
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Fig. 3. Network-wide accessibility reduction under failures of 30 stations. 

 

The top-15 stations whose failures result in the most accessibility reductions are 

shown in Table 2. Passenger volume of each station is ranked for the top-15 stations 

out of the 30 stations. The network accessibility values do not vary too much under 

these station failures, however, the station importance rank is different from the rank 

of original passenger volume. Stations 4 and 3 are shown to be the most important 

stations, and no differences are reported under both ranks. As discussed above, the 

most difference between the two ranks is observed under station 30 followed by 

stations 70 and 26. Such stations should be paid particular attentions as they do not 

seem to be very important under normal situation but turn out to be seriously affecting 

network accessibility if failed, or show high importance levels normally but are not 

that critical once disrupted. Once a station is failed, some working stations could be 

affected to different extents because of network topology and passenger flow 

interrelationships between them. The top-5 most affected working stations under each 

station failure are also identified in Table 2. The five most affected working stations 

mainly belong to the same rail line as the disrupted stations, which demonstrates that 

most indirect impacts of a station failure are imposed on stations sharing the same line. 

Moreover, the most affected working stations include not only surrounding stations of 

the disrupted station but also far away stations with large passenger flow. Station 86 is 

shown to be the most affected station under failures of stations 8 and 15, as the OD 

trips of station 86 to and from stations 8 and 15 are the most among other stations. 

Station 18 turns out to be the most affected station if station 3, 11, 20, or 26 is 

disrupted. This is because that OD trips of station 18 between stations 20 and 26 are 

high which are almost ten times of other stations, and the bus passenger volume ratios 
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are low for stations 3 and 11 and once disrupted travel costs from stations 3 and 11 to 

station 18 would be high. Besides, stations 28 and 91 are also shown to be the top-5 

most affected stations under many station failures, and these stations should be paid 

more attention under disruptions.   

Table 2  

Top-15 stations with most impacts on network accessibility. 

Station 

ID 

Passenger 

volume rank 

Network accessibility after 

station disruption (%) 

Accessibility 

reduction rank 

Most affected 

working stations 

4 1 88.623  1 5, 18, 28, 94, 116 

3 2 89.058 2 18, 71, 94, 90, 28 

6 3 89.204 5 8, 91, 7, 30, 18 

1 4 89.337 6 28, 18, 94, 5, 3 

11 5 89.297 3 18, 91, 12, 116, 28 

8 6 89.381 7 86, 6, 18, 90, 91 

15 7 89.789 10 86, 30, 18, 90, 5 

26 8 89.307 4 18, 28, 91, 30, 116 

85 9 89.285 8 91, 18, 90, 86, 94 

70 11 89.681 15 91, 118, 116, 117, 3 

91 12 89.348 9 116, 86, 90, 94, 71 

109 13 89.664 12 91, 118, 117, 18, 28 

20 14 89.380 11 18, 28, 30, 17, 3 

72 17 89.726 14 91, 18, 66, 117, 28 

30 18 89.633 13 28, 18, 116, 91, 24  

 

5.2. Network accessibility under multiple station failures 

 

The proposed methodology is applied to simultaneous multiple station failures on 

SURTN. Six scenarios are proposed, and the network accessibility is calculated for 

each scenario in Table 3. As shown in the Table, scenarios with large passenger 

volume do not necessarily cause high network accessibility reduction, and scenarios 

with three stations normally have more impacts on network accessibility than those of 

two stations. The top-5 most affected working stations under each scenario are also 

included in the results. Similar to individual station failures, the most affected 

working stations are mainly those on the same line with disrupted stations. Stations 18 

and 19 are shown to be the mostly affected under four multiple station failure 

scenarios, and station 18 appears in three of the six scenarios. This could be explained 

by the high OD trip distributions of station 18 on stations of Line 1 and those in the 

southeast of the network, and when stations in these areas are failed the accessibility 

of station 18 would be importantly affected. Together with results in Table 2, it could 

be reached that stations 116, 117, and 118 are vulnerable to station failures on the 

same line especially to disruptions of transfer station, since they show high 

accessibility reductions under these failures.   
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Table 3  

Network accessibility under multiple station failures. 

Station 

IDs 

Passenger 

volume rank 

Network accessibility 

after disruptions (%) 

Accessibility 

reduction rank 

Most affected 

working stations 

3, 4 1 71.766 3 18, 94, 5, 24, 90 

11, 45, 70 2 64.802 1 19, 40, 91, 116, 118 

8, 30, 50 3 64.822 2 19, 86, 91, 90, 92 

1, 20 4 72.626 4 18, 28, 25, 24, 3 

56, 91 5 72.880 5 116, 117, 118, 54, 114 

24, 26 6 73.043 6 91, 30, 28, 18, 113 

 

Urban rail network accessibility under link and line failures could be measured based 

on station failures, that is, individual or multiple stations disruptions. The 

vulnerability of rail transit network should also include the probability of station, link, 

or line failure. The network vulnerability is the product of failure probability and 

network accessibility reduction. Besides, types of disruption and its time duration 

should also be included in the vulnerability analysis.   

 

6. Conclusions  

 

Urban rail transit network vulnerability is largely researched on network topology 

issues in previous studies, and passenger flow characteristics should be included in 

vulnerability approaches considering its influence on network performance.  

This study presents and applies an accessibility-based vulnerability method to 

explicitly account for the passenger flow characteristics under conditions of station(s), 

link(s), and line(s) disruptions. The vulnerability approach is presented with the help 

of an example network. Distinct results are shown between the proposed method and 

existing indices in the literature. The proposed approach makes better sense by 

capturing the passenger flow distribution and ground bus alternative. Most 

topology-based methods could not provide further information except for the 

evaluated station, while the proposed approach could assess impacts not only on the 

network but also on other stations. The case study on the rail transit network of 

Shenzhen, China further demonstrate that the consequences of station disruptions on 

network performance differ obviously with different passenger flow distributions and 

bus alternative availability.         

Results of the proposed measure could be learnt by public transport planners and 

operators to design and manage a resilient urban rail transit network. The vulnerability 

of network could be reduced with network plan and design measures during the rail 

transit network expansion especially for the most important stations. Bus and other 

transit network should be planned in coordination with the urban rail transit network 

to enhance the robustness of the transit network as a whole. Under emergencies of rail 

transit, bridging bus design and operation decisions could be made based on the 

identified impacts of disrupted stations on the network. Besides measures taken for 

the disrupted rail stations, ground bus bridging and passenger evacuation plans could 
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also be adopted for the most affected working stations. 

The main limitation of the presented approach is the more data needed than previous 

methods. Fortunately, these passenger flow data are widely available from multiple 

sources in public transport. The process of these data and calculation would consume 

a little more time than the network topology methods, but the total time for each 

scenario is only half minute which would be acceptable with more in-depth results 

learnt. An additional limitation relates to the behavioral assumption that all the 

affected passengers would take bus as alternative, but in reality some may take other 

transit modes such as taxi and others may wait until disruptions are fixed. Detailed 

passenger behavioral analyses at different travel stages with revealed preference and 

stated preference data under different rail disruptions would benefit the analysis of rail 

transit network vulnerability within multi-modal public transport networks.   
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